A Generalized Proximal-Point Method for Convex Optimization Problems in Hilbert Spaces∗

نویسندگان

  • Christian Kanzow
  • Daniel Steck
چکیده

We deal with a generalization of the proximal-point method and the closely related Tikhonov regularization method for convex optimization problems. The prime motivation behind this is the well-known connection between the classical proximal-point and augmented Lagrangian methods, and the emergence of modified augmented Lagrangian methods in recent years. Our discussion includes a formal proof of a corresponding connection between the generalized proximal-point method and the modified augmented Lagrange approach in infinite dimensions. Several examples and counterexamples illustrate the convergence properties of the generalized proximal-point method and indicate that the corresponding assumptions are sharp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces

Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...

متن کامل

An Approximate Proximal Point Algorithm for Maximal Monotone Inclusion Problems

This paper presents and analyzes a strongly convergent approximate proximal point algorithm for finding zeros of maximal monotone operators in Hilbert spaces. The proposed method combines the proximal subproblem with a more general correction step which takes advantage of more information on the existing iterations. As applications, convex programming problems and generalized variational inequa...

متن کامل

Composition of resolvents and quasi-nonexpansive multivalued mappings in Hadamared spaces

‎The proximal point algorithm‎, ‎which is a well-known tool for finding‎ ‎minima of convex functions‎, ‎is generalized from the classical‎ ‎Hilbert space framework into a nonlinear setting‎, ‎namely‎, ‎geodesic‎ ‎metric spaces of nonpositive curvature‎. ‎In this paper we propose an‎  ‎iterative algorithm for finding the common element of the‎ ‎minimizers of a finite family of convex functions a...

متن کامل

A proximal-Newton method for unconstrained convex optimization in Hilbert spaces

We propose and study the iteration-complexity of a proximal-Newton method for finding approximate solutions of the problem of minimizing a twice continuously differentiable convex function on a (possibly infinite dimensional) Hilbert space. We prove global convergence rates for obtaining approximate solutions in terms of function/gradient values. Our main results follow from an iteration-comple...

متن کامل

A Proximal Point Method for Nonsmooth Convex Optimization Problems in Banach Spaces

In this paper we show the weak convergence and stability of the proximal point method when applied to the constrained convex optimization problem in uniformly convex and uniformly smooth Banach spaces. In addition, we establish a nonasymptotic estimate of convergence rate of the sequence of functional values for the unconstrained case. This estimate depends on a geometric characteristic of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016